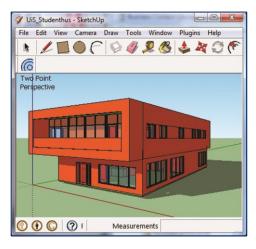

Measurement - Simulation - Auralisation

Standards Supported

- ISO 3382 series Performance places, ordinary rooms, open-plan offices.
- ISO 14257 Workplaces.
- IEC 60268-16 Speech Transmission Index.

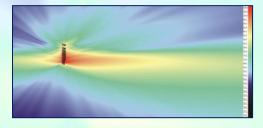
Open Room


Room geometries can be imported from most CAD systems in the .DXF or .3DS format

ODEON takes care to simplify the room for optimized acoustic simulations.

6 SketchUp Plug-in

Download a free plug-in for importing models directly from Trimble SketchUp (www.sketchup.com) to ODEON.



Try ODEON without time limitations: www.odeon.dk/free-demo-version.

Sound Sources

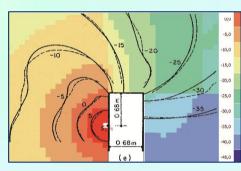
Point sources are described by a directivity pattern, a power spectrum and a delay, allowing the definition of natural sound sources as well as loudspeaker systems. Array sources can be imported from an extensible XML-format or can be created from point sources within the ODEON array source editor.

A near field plot obtained by the ODEON array source editor in a few seconds.

Line sources and surface sources are useful for calculations in industrial environments. The above example is a turbine from a power station.

Materials

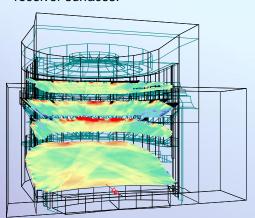
The room surfaces are assigned materials, with absorption coefficients for the octave bands from 63 Hz to 8000 Hz, as well as scattering and transmission properties.

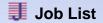


User-friendly assignment of materials from a long and extendable library.

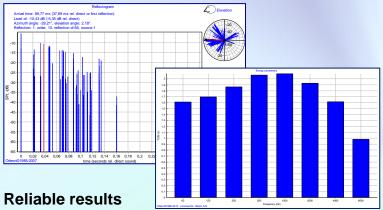
Methods

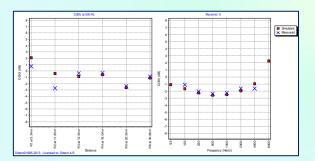
ODEON makes use of hybrid algorithms, highly optimized for maximum accuracy at modest calculation time. Early reflections are calculated using the *Image Source Method*, while late reflections are simulated by a technique called *Ray Radiosity*, with *secondary sources* placed at all reflection points. Scattering/diffraction is handled properly using the *Reflection Based Scattering* method.

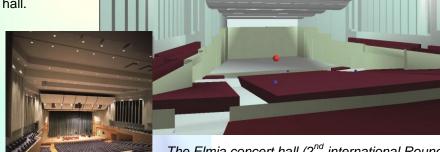

One and two point *diffraction* paths over screens are automatically detected by ODEON, allowing the sound attenuation behind the screen to be calculated.


Sound distribution in the shadow zone of a screen.

Grid Maps

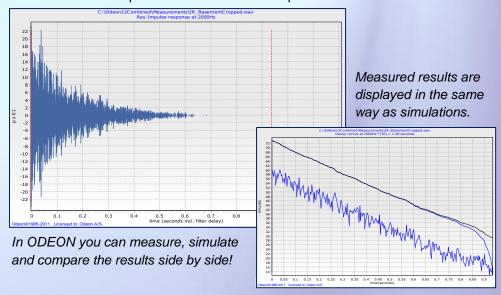

Maps of calculated acoustic parameters are shown for any number of selected receiver surfaces.


Distribution of clarity C₈₀ at 1 kHz.



The Job list is where calculation of point responses and auralisation results are organised and displayed. Point responses, multi-point responses, grid maps and reflection paths can be calculated in the job list.

The frequency-dependent reflection based scattering method in ODEON is one of the reasons for excellent agreement with measurement results. In this example simulated and measured clarity C₈₀ at 500 Hz is shown for the Elmia concert hall.



The Elmia concert hall (2nd international Round Robin on room acoustic prediction models).

👇 Measuring system

Measuring and simulating room impulse responses can be done from within the same software! ODEON version 12 is equipped with a powerful measuring system that allows the user to measure impulse responses in a room, calculate the ISO 3382 room acoustic parameters and make comparisons with simulations.

Elegant and user-friendly interface Fast and reliable calculation Astonishingly realistic auralisation

Auralisation

Listen to the rooms and demonstrate predicted acoustics to clients, as it sounds in reality. Auralisation works both for headphone and surround system reproduction.

Dystrybutor na terenie Polski:

Systemy Pomiarowe Sp. z o.o. ul. Lublańska 34, 31-476 Kraków tel.: +48 12 357 66 88, fax: +48 12 350 57 03 e-mail: kontakt@systemy-pomiarowe.com